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SIMULTANEOUSLY PREPERIODIC INTEGERS FOR

QUADRATIC POLYNOMIALS

VALENTIN HUGUIN

Abstract. In this article, we study the set of parameters c ∈ C for which two

given complex numbers a and b are simultaneously preperiodic for the qua-
dratic polynomial fc(z) = z2 + c. Combining complex-analytic and arithmetic

arguments, Baker and DeMarco showed that this set of parameters is infinite

if and only if a2 = b2. Recently, Buff answered a question of theirs, proving
that the set of parameters c ∈ C for which both 0 and 1 are preperiodic for fc
is equal to {−2,−1, 0}. Following his approach, we complete the description

of these sets when a and b are two given integers with |a| 6= |b|.

1. Introduction

For c ∈ C, let fc : C→ C be the complex quadratic map

fc : z 7→ z2 + c .

Given a point z ∈ C, we study the sequence (f◦nc (z))n≥0 of iterates of fc at z.

The set {f◦nc (z) : n ≥ 0} is called the forward orbit of z under fc.
The point z is said to be periodic for fc if there exists an integer p ≥ 1 such that

f◦pc (z) = z. The least such integer p is called the period of z. The point z is said
to be preperiodic for fc if its forward orbit is finite or, equivalently, if there is an
integer k ≥ 0 such that f◦kc (z) is periodic for fc. The smallest integer k with this
property is called the preperiod of z.

Definition 1. For a ∈ C, let Sa be the set defined by

Sa = {c ∈ C : a is preperiodic for fc} .

In this paper, we wish to examine these sets of parameters.
For n ≥ 0, let Fn ∈ Z[c, z] be the polynomial given by

Fn(c, z) = f◦nc (z) .

The sequence (Fn)n≥0 satisfies F0(c, z) = z and the recursion formulas

Fn(c, z) = Fn−1
(
c, z2 + c

)
= Fn−1(c, z)2 + c for n ≥ 1 .

In particular, when n ≥ 1, the polynomial Fn is monic in c of degree 2n−1 and
monic in z of degree 2n.

Now, given a point a ∈ C, define – for k ≥ 0 and p ≥ 1 – the set

Sk,pa = {c ∈ C : Fk+p(c, a) = Fk(c, a)} .
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For all k ≥ 0 and p ≥ 1, the set Sk,pa contains at most 2k+p−1 elements and consists
of the parameters c ∈ C for which the point a is preperiodic for fc with preperiod
less than or equal to k and period dividing p.

In particular, it follows that the set

Sa =
⋃

k≥0, p≥1

Sk,pa

is countable.

Proposition 2. For every a ∈ C, the set Sa is infinite.

Proof. To obtain a contradiction, suppose that Sa contains finitely many elements.
Then, since the sequence

(
Sn,1a

)
n≥0 is increasing, there exists an integer N ≥ 0

such that Sn+1,1
a = Sn,1a for all n ≥ N . Now, note that, for every n ≥ 0, we have

Fn+2(c, a)− Fn+1(c, a) = (Fn+1(c, a)− Fn(c, a)) (Fn+1(c, a) + Fn(c, a)) .

It follows that, if n ≥ N and γ is a root of the polynomial Fn+1(c, a) + Fn(c, a),
then

Fn+1(γ, a)− Fn(γ, a) = Fn+1(γ, a) + Fn(γ, a) = 0 ,

and hence Fn+1(γ, a) = Fn(γ, a) = 0, which yields γ = 0. Therefore, we have
Fn(0, a) = 0 and Fn+1(c, a) + Fn(c, a) = c2

n

for all n ≥ N . In particular, we get

∂ (FN+2 + FN+1)

∂c
(0, a) = 2

∂FN+1

∂c
(0, a)FN+1(0, a) + 2

∂FN
∂c

(0, a)FN (0, a) + 2 = 2 ,

which contradicts the fact that FN+2(c, a) + FN+1(c, a) = c2
N+1

. �

Remark 3. Note that, if a ∈ C, then fc(a) = fc(−a) for all c ∈ C. Consequently,

we have Sa = S−a and Sk,pa = Sk,p−a for all k ≥ 1 and p ≥ 1.

Example 4. Assume that a ∈ C. Then (see Figure 1) we have

S0,1a =
{
−a2 + a

}
,

S1,1a =
{
−a2 − a,−a2 + a

}
,

S0,2a =
{
−a2 − a− 1,−a2 + a

}
,

S1,2a =
{
−a2 − a− 1,−a2 − a,−a2 + a− 1,−a2 + a

}
.

Here, the problem we are interested in is the description of the sets Sa∩Sb when
a and b are two given complex numbers.

Example 5. Suppose that a ∈ C. Then (see Figure 2) we have

−a2 − a− 1 = −(a+ 1)2 + (a+ 1)− 1 ∈ S0,2a ∩ S
1,2
a+1

and

−a2 − a = −(a+ 1)2 + (a+ 1) ∈ S1,1a ∩ S
0,1
a+1 .

Example 6. We have −2 ∈ S2,10 ∩ S1,11 , −1 ∈ S0,20 ∩ S1,21 and 0 ∈ S0,10 ∩ S0,11 (see
Figure 3).
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a for c = −a2 + a,

fc

a −a for c = −a2 − a,

fc fc

a −a− 1 for c = −a2 − a− 1,

fc

fc

a a− 1 −a for c = −a2 + a− 1.

fc fc

fc

Figure 1. Some parameters c ∈ C for which a given complex
number a is preperiodic for fc.

a+ 1 a −a− 1 for c = −a2 − a− 1,

fc fc

fc

a −a and a+ 1 for c = −a2 − a.

fc fc fc

Figure 2. Two parameters c ∈ C for which a and a+1 are simul-
taneously preperiodic for fc when a is a given complex number.

0 −2 2 and 1 −1

f−2 f−2 f−2 f−2 f−2

1 0 −1

f−1 f−1

f−1

0 and 1

f0 f0

Figure 3. Three parameters c ∈ C for which both 0 and 1 are
preperiodic for fc.
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Since the sets Sa are countably infinite (see Proposition 2), we may wonder
whether the sets Sa ∩ Sb are infinite. This question was answered by Baker and
DeMarco in [BD11]. Using potential theory and an equidistribution result for points
of small height with respect to an adelic height function, they proved that the set
Sa ∩ Sb is infinite if and only if a2 = b2.

As they pointed out, their proof is not effective and does not provide any estimate
on the cardinality of these sets when they are finite. In their article, Baker and
DeMarco conjectured that −2, −1 and 0 were the only parameters c ∈ C for which
0 and 1 are simultaneously preperiodic for fc (see Example 6). Using localization
properties of the set of parameters c ∈ C for which both 0 and 1 have bounded
forward orbit under fc and the fact that 0 is the only parameter c ∈ C that is
contained in the main cardioid of the Mandelbrot set and for which 0 is preperiodic
for fc, Buff gave an elementary proof of their conjecture in [Buf18].

Following his approach, we complete the description of the sets Sa ∩ Sb when a
and b are two given integers with |a| 6= |b|. More precisely, we prove the following
theorem, which asserts that Example 5 and Example 6 present all the parameters
c ∈ C for which two given distinct and non-opposite integers are simultaneously
preperiodic for the polynomial fc:

Theorem 7. Assume that a and b are two integers with |b| > |a|. Then

• either a = 0, |b| = 1 and Sa ∩ Sb = {−2,−1, 0},
• or a = 0, |b| = 2 and Sa ∩ Sb = {−2},
• or |a| ≥ 1, |b| = |a|+ 1 and Sa ∩ Sb =

{
−a2 − |a| − 1,−a2 − |a|

}
,

• or |b| > max {2, |a|+ 1} and Sa ∩ Sb = ∅.

Our proof is elementary and uses only basic analytic and arithmetic arguments.
In particular, the reader does not need to be familiar with complex dynamics.

In Section 2, we reprove some well-known results on the dynamics of the poly-
nomials fc. In Section 3, we go back to the study of the parameter space and give
a proof of Theorem 7.

Acknowledgments. The author would like to thank his Ph.D. advisors, Xavier Buff
and Jasmin Raissy, for helpful discussions without which this paper would not exist.

2. The dynamics of the quadratic polynomials

We shall investigate here the dynamics of the quadratic maps fc : C→ C.
Given a parameter c ∈ C, let Xc be the set

Xc = {z ∈ C : z is preperiodic for fc} ,

and, for k ≥ 0 and p ≥ 1, let X k,pc be the set

X k,pc = {z ∈ C : Fk+p(c, z) = Fk(c, z)} .

For all k ≥ 0 and p ≥ 1, the set X k,pc contains at most 2k+p elements, is invariant
under fc and consists of the preperiodic points for fc with preperiod less than or
equal to k and period dividing p. In particular, we have

Xc =
⋃

k≥0, p≥1

X k,pc .

Moreover, the set Xc is completely invariant under fc – that is, for every z ∈ C,
fc(z) ∈ Xc if and only if z ∈ Xc.
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Remark 8. Note that, if c ∈ C, then fc(z) = fc(−z) for all z ∈ C. Therefore, the
sets Xc and X k,pc , with k ≥ 1 and p ≥ 1, are symmetric with respect to the origin.

Proposition 9. For every c ∈ C, we have

Xc ⊂
⋂
n≥0

{z ∈ C : |f◦nc (z)| ≤ ρc} ,

where ρc =
1+
√

1+4|c|
2 .

Proof. For every z ∈ C, we have |fc(z)| ≥ |z|2 − |c|, and |z|2 − |c| > |z| if and
only if |z| > ρc. It follows by induction that, if z ∈ C satisfies |z| > ρc, then∣∣∣f◦(k+p)c (z)

∣∣∣ > ∣∣f◦kc (z)
∣∣ for all k ≥ 0 and p ≥ 1, and hence z is not preperiodic for fc.

As the set Xc is invariant under fc, this completes the proof of the proposition. �

Now, let us study the dynamics of the polynomial fc when c is a real parameter.
Suppose that c ∈

(
−∞, 14

]
. Then the map fc : R→ R is even and strictly increasing

on R≥0, has two fixed points αc ≤ βc – with equality if and only if c = 1
4 – given

by

αc =
1−
√

1− 4c

2
and βc =

1 +
√

1− 4c

2
and satisfies fc(z) > z for all z ∈ (βc,+∞). In particular, we have

fc ([−βc, βc]) = [c, βc]

and the sequence (f◦nc (z))n≥0 diverges to +∞ for all z ∈ (−∞,−βc) ∪ (βc,+∞).

It follows that, if c ∈
[
−2, 14

]
, then

fc ([−βc, βc]) ⊂ [−βc, βc] ,

and hence, for every z ∈ R, the point z has bounded forward orbit under fc if and
only if z ∈ [−βc, βc].

Remark 10. Note that, for every c ∈ C, we have ρc = β−|c|.

Let us examine more thoroughly the dynamics of the map fc when c ∈ (−∞,−2].
It is related to the dynamics of the shift map in the space of sign sequences.

Let σ : {−1, 1}Z≥0 → {−1, 1}Z≥0 denote the shift map, which sends any sequence
ε = (εn)n≥0 of ±1 to the sequence (εn+1)n≥0.

A sign sequence ε is said to be periodic with period p ≥ 1 if σ◦p(ε) = ε and p
is the least such integer. The sequence ε is said to be preperiodic with preperiod
k ≥ 0 if the sequence σ◦k(ε) is periodic and k is minimal with this property.

For k ≥ 0 and p ≥ 1, define

Σk,p =
{
ε ∈ {−1, 1}Z≥0 : σ◦(k+p)(ε) = σ◦k(ε)

}
to be the set of all preperiodic sign sequences with preperiod less than or equal to
k and period dividing p, and define

Σ =
⋃

k≥0, p≥1

Σk,p

to be the collection of all preperiodic sign sequences. For all k ≥ 0 and p ≥ 1, the set
Σk,p contains exactly 2k+p elements – each of them being completely determined by
the choice of its first k+ p terms – and is invariant under the shift map. Moreover,
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the set Σ is completely invariant under the shift map – that is, any sign sequence
ε is preperiodic if and only if the sequence σ(ε) is preperiodic.

Theorem 11. For every c ∈ (−∞,−2], there exists a unique map

ψc : Σ→ R

that makes the diagram below commute and satisfies ε0ψc(ε) ≥ 0 for all ε ∈ Σ.

Σ Σ

R R

σ

fc

ψc ψc

Furthermore, for every ε ∈ Σ, we have

ε0ψc(ε) ∈
[√
−βc − c, βc

]
,

for all c ∈ (−∞,−2], and the map ζε : (−∞,−2]→ R defined by

ζε(c) = ψc(ε)

is continuous.

Before proving Theorem 11, observe that c ≤ −βc for all c ∈ (−∞,−2], with
equality if and only if c = −2. Consequently, for c ∈ (−∞,−2] and ε = ±1, the
partial inverse gεc : [c,+∞)→ R of fc given by

gεc(z) = ε
√
z − c

is well defined on [−βc, βc], and we have

gεc ([−βc, βc]) =
[
ε
√
−βc − c, εβc

]
⊂ [−βc, βc] .

Lemma 12. For all c ∈ (−∞,−2] and all ε = (ε0, . . . , εp−1) ∈ {−1, 1}p, with
p ≥ 1, the map gεc : [−βc, βc]→ [−βc, βc] defined by

gεc (z) = gε0c ◦ · · · ◦ gεp−1
c (z)

has a unique fixed point zε(c).
Moreover, for every finite sequence ε of ±1, the map c 7→ zε(c) is continuous.

Claim 13. If c ∈ (−∞,−2], ε ∈ {−1, 1}p, with p ≥ 1, and z is a fixed point of gεc ,
then z ∈ X 0,p

c and εjf
◦j
c (z) > 0 for all j ∈ {0, . . . , p− 1}.

Proof of Claim 13. We have f◦pc (z) = z and the set X 0,p
c is invariant under fc.

Therefore, for all j ∈ {0, . . . , p− 1}, we have

f◦jc (z) = gεjc ◦ · · · ◦ gεp−1
c (z) ∈ gεjc ([−βc, βc]) ∩ X 0,p

c ,

which yields

εjf
◦j
c (z) ∈

(√
−βc − c, βc

]
⊂ R>0

since εj
√
−βc − c is preperiodic for fc with preperiod 2 and period 1. �



SIMULTANEOUSLY PREPERIODIC INTEGERS FOR QUADRATIC POLYNOMIALS 7

Proof of Lemma 12. Fix c ∈ (−∞,−2] and p ≥ 1. For every ε ∈ {−1, 1}p, the map
gεc has a fixed point zε(c) by the intermediate value theorem. Now, note that zε(c)

is not a fixed point of gε
′

c whenever ε 6= ε′ ∈ {−1, 1}p by Claim 13. Therefore, the
points zε(c), with ε ∈ {−1, 1}p, are pairwise distinct, and, since X 0,p

c contains at
most 2p elements, it follows that

X 0,p
c = {zε(c) : ε ∈ {−1, 1}p} .

Thus, for every ε ∈ {−1, 1}p, zε(c) is the unique fixed point of the map gεc .
Now, fix p ≥ 1, ε = (ε0, . . . , εp−1) ∈ {−1, 1}p and c ∈ (−∞,−2]. It remains to

verify that the map c′ 7→ zε (c′) is continuous at c. For each c′ ∈ (−∞,−2], choose
εc′ ∈ {−1, 1}p such that

∣∣zε(c)− zεc′ (c′)
∣∣ is minimal. Then we have

∣∣zε(c)− zεc′ (c′)
∣∣ ≤

 ∏
ε′∈{−1,1}p

|zε(c)− zε′ (c
′)|

 1
2p

= |Fp (c′, zε(c))− zε(c)|
1
2p

for all c′ ∈ (−∞,−2], and so zεc′ (c′) tends to zε(c) as c′ approaches c. By Claim 13,

it follows that, whenever c′ is close enough to c, we have εjf
◦j
c′

(
zεc′ (c′)

)
> 0 for all

j ∈ {0, . . . , p− 1}, which yields εc′ = ε. Thus, the limit of zε (c′) as c′ approaches
c is zε(c), and the lemma is proved. �

We may now deduce Theorem 11 from Lemma 12.

Proof of Theorem 11. Fix c ∈ (−∞,−2]. Assume that ψc : Σ → R is a map that
satisfies fc ◦ ψc = ψc ◦ σ and ε0ψc(ε) ≥ 0 for all ε ∈ Σ. Then, for all ε ∈ Σ and all
n ≥ 0, we have

ψc(ε) = gε0c ◦ · · · ◦ gεnc
(
ψc

(
σ◦(n+1)(ε)

))
.

It follows that, if ε is a periodic sign sequence with period p ≥ 1, then ψc(ε) is
a fixed point of the map g

εp
c , where εp = (ε0, . . . , εp−1) ∈ {−1, 1}p, and hence

ψc(ε) = zεp(c). Therefore, for every ε ∈ Σ with preperiod k ≥ 0 and period

p ≥ 1, we have ψc(ε) = g
εpp
c

(
zεp(c)

)
, where εpp = (ε0, . . . , εk−1) ∈ {−1, 1}k and

εp = (εk, . . . , εk+p−1) ∈ {−1, 1}p, adopting the convention that g∅c denotes the
identity map of [−βc, βc]. In particular, there is at most one map ψc : Σ→ R that
satisfies the conditions above.

For ε = (εn)n≥0 a preperiodic sign sequence with preperiod k ≥ 0 and period

p ≥ 1, define εpp = (ε0, . . . , εk−1) ∈ {−1, 1}k, εp = (εk, . . . , εk+p−1) ∈ {−1, 1}p
and ψc(ε) = g

εpp
c

(
zεp(c)

)
. If ε is a periodic sign sequence with period p ≥ 1, then

fc ◦ ψc(ε) is a fixed point of the map g
σ(ε)p
c since σ(ε)p = (ε1, . . . , εp−1, ε0), and

hence fc ◦ ψc(ε) = ψc ◦ σ(ε). Similarly, if ε ∈ Σ has preperiod k ≥ 1 and period
p ≥ 1, then fc ◦ ψc(ε) = ψc ◦ σ(ε) since σ(ε)pp = (ε1, . . . , εk−1) and σ(ε)p = εp.
Moreover, for all ε ∈ Σ, we have ψc(ε) ∈ gε0c ([−βc, βc]), which yields

ε0ψc(ε) ∈
[√
−βc − c, βc

]
⊂ R≥0 .

Thus, the map ψc : Σ→ R so defined has the required properties.
Furthermore, for every ε ∈ Σ, the map ζε : c 7→ ψc(ε) is clearly continuous. �

Remark 14. Observe that, if c ∈ (−∞,−2] and ε, ε′ ∈ Σ satisfy ε0 = −ε′0 and
σ(ε) = σ (ε′), then ψc(ε) = −ψc (ε′).
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Note that the proof of Theorem 11 provides explicit formulas for the maps ζε
with ε ∈ Σk,1 and k ≥ 0.

Example 15. Suppose that ε = ±1. Then

• for ε ∈ Σ1,1 given by ε0 = ε and ε1 = −1, we have

ζε : c 7→ ψc(ε) = −εαc ;

• for ε ∈ Σ1,1 given by ε0 = ε and ε1 = 1, we have

ζε : c 7→ ψc(ε) = εβc ;

• for ε ∈ Σ2,1 given by ε0 = ε, ε1 = 1 and ε2 = −1, we have

ζε : c 7→ ψc(ε) = ε
√
−αc − c ;

• for ε ∈ Σ2,1 given by ε0 = ε, ε1 = −1 and ε2 = 1, we have

ζε : c 7→ ψc(ε) = ε
√
−βc − c .

Proposition 16. Assume that c ∈ (−∞,−2]. Then we have

X k,pc = ψc

(
Σk,p

)
⊂ [−βc, βc]

for all k ≥ 0 and p ≥ 1 (see Figure 4).
Furthermore, if c ∈ (−∞,−2), then the map ψc : Σ→ R is injective.

Proof. For all n ≥ 0, we have f◦nc ◦ψc = ψc ◦σ◦n. Consequently, ψc

(
Σk,p

)
⊂ X k,pc

for all k ≥ 0 and p ≥ 1.
Now, suppose that c ∈ (−∞,−2). Then, for all ε ∈ Σ and all n ≥ 0, we have

εnf
◦n
c (ψc(ε)) ∈

[√
−βc − c, βc

]
⊂ R>0 .

Therefore, the map ψc is injective, and, since X k,pc contains at most 2k+p elements,

it follows that ψc

(
Σk,p

)
= X k,pc , for all k ≥ 0 and p ≥ 1.

It remains to prove that X k,p−2 ⊂ ψ−2

(
Σk,p

)
for all k ≥ 0 and p ≥ 1. Fix k ≥ 0

and p ≥ 1, and suppose that z ∈ X k,p−2 . Then, for all c ∈ (−∞,−2), we have

min
ε∈Σk,p

|z − ψc(ε)| ≤

 ∏
ε∈Σk,p

|z − ψc(ε)|

 1

2k+p

= |Fk+p(c, z)− Fk(c, z)|
1

2k+p .

As the maps ζε, with ε ∈ Σk,p, are continuous at−2, it follows that z ∈ ψ−2
(
Σk,p

)
.

Thus, the proposition is proved. �

Remark 17. Applying Montel’s theorem, it follows from Proposition 16 that, for
every c ∈ (−∞,−2], the filled-in Julia set of fc – that is, the set of points z ∈ C
that have bounded forward orbit under fc – is also contained in [−βc, βc].

Note that the map ψ−2 is not injective. More precisely, we have the following:

Proposition 18. For all ε 6= ε′ ∈ Σ, ψ−2(ε) = ψ−2 (ε′) if and only if there

exists an integer k ≥ 2 such that ε, ε′ ∈ Σk,1, εj = ε′j for all j ∈ {0, . . . , k − 3},
εk−2 = −ε′k−2, εk−1 = ε′k−1 = −1 and εk = ε′k = 1.
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−βc −
√
−βc − c

√
−βc − c βc

z

c

−βc

βc

w

Figure 4. Graphs of the maps z 7→ Fn(c, z), with n ∈ {0, . . . , 3},
when c ∈ (−∞,−2].

Proof. Suppose that ε 6= ε′ ∈ Σ satisfy ψ−2(ε) = ψ−2 (ε′). Then, for all n ≥ 0, we
have

εnf
◦n
−2 (ψ−2(ε)) ≥ 0 and ε′nf

◦n
−2 (ψ−2(ε)) ≥ 0 .

Since ε 6= ε′, it follows that there is an integer k ≥ 0, which we may assume
minimal, such that f◦k−2 (ψ−2(ε)) = 0. For all j ∈ {0, . . . , k − 1}, the inequalities

above are strict, and hence εj = ε′j . Moreover, we have f
◦(k+1)
−2 (ψ−2(ε)) = −2 and

f◦n−2 (ψ−2(ε)) = 2 for all n ≥ k+ 2, which yields εk+1 = ε′k+1 = −1 and εn = ε′n = 1
for all n ≥ k + 2. Thus, the sign sequences ε and ε′ have the desired form.

Conversely, observe that, for ε ∈ Σ2,1 with ε1 = −1 and ε2 = 1, we have

ψ−2(ε) = ε0
√
−β−2 − (−2) = 0 .

Therefore, if k ≥ 2 and ε ∈ Σk,1 satisfies εk−1 = −1 and εk = 1, then

ψ−2(ε) = g
(ε0,...,εk−3)
−2

(
ψ−2

(
σ◦(k−2)(ε)

))
= g

(ε0,...,εk−3)
−2 (0)

does not depend on εk−2. This completes the proof of the proposition. �

Remark 19. It follows from Proposition 16 and Proposition 18 that, for all k ≥ 0

and p ≥ 1, the set X k,p−2 contains exactly 2p elements if k = 0 and 2k+p − 2k−1 + 1
elements if k ≥ 1.
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Remark 20. Note that we can actually describe the map ψ−2 : Σ → R explicitly.
For ε ∈ Σ, define the sequence (δn(ε))n≥0 ∈ {0, 1}Z≥0 by

δn(ε) =

{
δn−1(ε) if εn = 1

1− δn−1(ε) if εn = −1
,

where δ−1(ε) = 0 by convention. Then the map ψ−2 : Σ→ R is given by

ψ−2(ε) = 2 cos

(
π

+∞∑
n=0

δn(ε)

2n+1

)
.

3. Back to the parameter space

We shall now exploit the statements given in Section 2 to get results concerning
the parameter space.

Remark 21. By definition, for every point a ∈ C and every parameter c ∈ C, c ∈ Sa
if and only if a ∈ Xc and, for all k ≥ 0 and p ≥ 1, c ∈ Sk,pa if and only if a ∈ X k,pc .

Proposition 22. For every a ∈ C, we have

Sa ⊂ {c ∈ C : |c| ≤ Ra} ,

where Ra = |a|2 +
√
|a|2 + 1 + 1.

Proof. Suppose that c ∈ Sa. Then, by Proposition 9, we have

|c| − |a|2 ≤ |fc(a)| ≤ ρc ,

and hence ϕ (|c|) ≤ |a|2, where ϕ : R≥0 → R is given by

ϕ(x) = x− 1 +
√

1 + 4x

2
.

The map ϕ is strictly increasing and satisfies ϕ (Ra) = |a|2. Thus, the proposition
is proved. �

Now, let us give a more extensive description of Sa when a ∈ (−∞,−2]∪[2,+∞).

Given ε = ±1, let Σk,p
ε – with k ≥ 0 and p ≥ 1 – be the set defined by

Σk,p
ε =

{
ε = (εn)n≥0 ∈ Σk,p : ε0 = ε

}
,

and let Σε be the set defined by

Σε =
⋃

k≥0, p≥1

Σk,p
ε = {ε ∈ Σ : ε0 = ε} .

For all k ≥ 0 and p ≥ 1, the set Σk,p
ε contains exactly 2k+p−1 elements – each

of them being completely determined by the choice of its terms with index in
{1, . . . , k + p− 1}.

Suppose that a ∈ (−∞,−2] ∪ [2,+∞). Then

• for ε ∈ Σ2,1
sgn(a) given by ε1 = −1 and ε2 = 1, the map

sgn(a)ζε : c 7→
√
−βc − c

is strictly decreasing on (−∞,−2] and we have ζε (c−a ) = a, where c−a is the
parameter defined by

c−a = −a2 −
√
a2 + 1− 1 ∈ S2,1a ;
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c−a c+
a −2

c 0

2

a

z

Figure 5. Graphs of the maps ζε, with ε ∈ Σ2,1
sgn(a), when a ∈ [2,+∞).

• for ε ∈ Σ1,1
sgn(a) given by ε1 = 1, the map

sgn(a)ζε : c 7→ βc

is strictly decreasing on (−∞,−2] and we have ζε (c+a ) = a, where c+a is the
parameter defined by

c+a = −a2 + |a| ∈ S1,1a .

Remark 23. Note that, for every a ∈ C with |a| ≥ 2, we have Ra = −c−|a|.

Theorem 24. Assume that a ∈ (−∞,−2] ∪ [2,+∞). Then there is a unique map

γa : Σsgn(a) → (−∞,−2]

that satisfies ζε (γa(ε)) = a for all ε ∈ Σsgn(a) (see Figure 5).
Furthermore, we have

Sk,pa = γa

(
Σk,p

sgn(a)

)
⊂
[
c−a , c

+
a

]
,

for all k ≥ 0 and p ≥ 1, (see Figure 6) and the map γa is injective.

Claim 25. If a ∈ (−∞,−2] ∪ [2,+∞) and γ ∈ (−∞,−2], then a has at most one
preimage under ψγ .

Proof of Claim 25. If γ ∈ (−∞,−2), then the map ψγ is injective.
If γ = −2 and ε ∈ Σ satisfies ψγ(ε) = a, then we have

2 ≤ |a| = |ψ−2(ε)| ≤ β−2 = 2 ,

so ψ−2(ε) = sgn(a)β−2, and, by Proposition 18, it follows that ε is the sign sequence

in Σ1,1
sgn(a) given by ε1 = 1. Thus, the claim is proved. �
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c−a c+
a

c 0

a

z

Figure 6. Graphs of the maps c 7→ Fn(c, a), with n ∈ {0, . . . , 3},
when a ∈ [2,+∞).

Proof of Theorem 24. For every ε ∈ Σsgn(a), we have

sgn(a)ζε
(
c−a
)
≥
√
−βc−a − c

−
a = |a| and sgn(a)ζε

(
c+a
)
≤ βc+a = |a| ,

and hence, by the intermediate value theorem, there exists γa(ε) ∈ [c−a , c
+
a ] such

that ζε (γa(ε)) = a. Now, note that, if ε ∈ Σk,p
sgn(a) – with k ≥ 0 and p ≥ 1 –

and γ ∈ (−∞,−2] satisfy ζε(γ) = a, then ε is a preimage of a under ψγ , and in
particular γ ∈ Sk,pa . Therefore, by Claim 25, the map γa so defined is injective,

and, as Sk,pa contains at most 2k+p−1 elements, it follows that γa

(
Σk,p

sgn(a)

)
= Sk,pa ,

for all k ≥ 0 and p ≥ 1. Thus, for every ε ∈ Σsgn(a), γa(ε) is the unique parameter
γ ∈ (−∞,−2] that satisfies ζε(γ) = a. This completes the proof of the theorem. �

Remark 26. Applying Montel’s theorem, it follows from Theorem 24 that, for every
a ∈ (−∞,−2] ∪ [2,+∞), the set of parameters c ∈ C for which the point a has
bounded forward orbit under fc is also contained in the line segment [c−a , c

+
a ].

Note that, when a is an integer, the set Sa has the following arithmetic property:

Proposition 27. For every a ∈ Z, the set Sa is contained in the set of algebraic
integers and is invariant under the action of Gal

(
Q/Q

)
.

Proof. For all k ≥ 0 and p ≥ 1, the polynomial Fk+p(c, a)− Fk(c, a) is monic with
integer coefficients since a ∈ Z. Thus, the proposition is proved. �
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We shall now prove Theorem 7, which we recall below.

Theorem 7. Assume that a and b are two integers with |b| > |a|. Then

• either a = 0, |b| = 1 and Sa ∩ Sb = {−2,−1, 0},
• or a = 0, |b| = 2 and Sa ∩ Sb = {−2},
• or |a| ≥ 1, |b| = |a|+ 1 and Sa ∩ Sb =

{
−a2 − |a| − 1,−a2 − |a|

}
,

• or |b| > max {2, |a|+ 1} and Sa ∩ Sb = ∅.

Lemma 28. Assume that m ∈ Z and c is an algebraic integer whose all Galois
conjugates lie in the interval (m− 2,m]. Then c = m− 1 or c = m.

Proof of Lemma 28. Set α = c −m + 1. Then α is an algebraic integer whose all
Galois conjugates α1, . . . , αd lie in the interval (−1, 1]. Therefore, we have

d∏
j=1

αj ∈ (−1, 1] ∩ Z = {0, 1} ,

and it follows that either αj = 0 for some j ∈ {1, . . . , d}, which yields α = 0, or
αj = 1 for all j ∈ {1, . . . , d}. Thus, either c = m− 1 or c = m. �

Proof of Theorem 7. For a proof of the case a = 0 and |b| = 1, we refer the reader
to [Buf18, Proposition 6].

Thus, we may assume that |b| ≥ 2. By Proposition 22, Theorem 24 and Propo-
sition 27, the set Sa ∩ Sb is contained in the set of algebraic integers, is invariant
under the action of Gal

(
Q/Q

)
and satisfies

Sa ∩ Sb ⊂ {c ∈ C : |c| ≤ Ra} ∩
[
c−b , c

+
b

]
.

Suppose that a = 0. Then we have

c+b = −b2 + |b| ≤ −2 = −Ra ,

with equality if and only if |b| = 2. Therefore, Sa ∩ Sb ⊂ {−2} if |b| = 2 and

Sa ∩ Sb = ∅ otherwise. Conversely, observe that −2 ∈ S2,1a ∩ S
1,1
b when |b| = 2.

Now, suppose that |a| ≥ 1. Then we have

c+b − 2 < −Ra = −a2 −
√
a2 + 1− 1 < −a2 − |a| = c+b if |b| = |a|+ 1

and
c+b = −b2 + |b| < −a2 −

√
a2 + 1− 1 = −Ra if |b| ≥ |a|+ 2 .

Therefore, Sa ∩ Sb ⊂
{
−a2 − |a| − 1,−a2 − |a|

}
if |b| = |a| + 1 by Lemma 28 and

Sa ∩ Sb = ∅ otherwise. Conversely, observe that −a2 − |a| − 1 ∈ S1,2a ∩ S1,2b and

−a2 − |a| ∈ S1,1a ∩ S
1,1
b when |b| = |a|+ 1. Thus, the theorem is proved. �
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